NSF TRIPODS: Towards a Unified Theory of Structure, Incompleteness & Uncertainty in Heterogeneous Graphs

NSF LogoThe UC Santa Cruz TRIPODS project brings together researchers from Data Science Santa Cruz Logomathematics, statistics, and computer science to develop a unified theory of data science applied to uncertain and heterogeneous graph and network data. Most real-world applications of networks involve complex phenomena, such as socio-behavioral interactions, biological and/or chemical processes, technical systems like data centers, and communication systems for smart cities. These data are heterogeneous, including multiple modalities and multiple scales. Crucially, the data observed is often incomplete and very noisy. A new foundation for data science needs to be built in order to address these challenges in the context of graph and network data. Similarly, we lack a clear unified theory that allows us to understand how to quantify the uncertainty in the system that arises from the uncertainty in the relationships among its actors. This is a fertile area for transdisciplinary collaboration between statisticians, mathematicians, and computer scientists, with strong impacts on industry, academia, government and broader society.